If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-15t-12=0
a = 5; b = -15; c = -12;
Δ = b2-4ac
Δ = -152-4·5·(-12)
Δ = 465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{465}}{2*5}=\frac{15-\sqrt{465}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{465}}{2*5}=\frac{15+\sqrt{465}}{10} $
| -1.4=8+j | | 11(x-5)=10(x+5) | | .15=-3+s | | -2(1+7k)=20 | | 4(9v+5=32+6v | | 7-(x-6)=29 | | 4w-12-6=42 | | X+10=3x-14 | | 4p-5=29 | | -5+2x+16=17 | | 10(x-5)=9(x+5) | | 120+x=23 | | 2.5(6x-4)=10+4(+1.5+0.5x) | | -5+2v-7v=35 | | 50+7=x | | 4m+2+1m=23 | | 1/3-r=11 | | r-1/3=11 | | 1n+4-3=3-(2n+3) | | 0=d/19 | | 1(n-4)-3=3-(2n+3) | | 8+w=3w | | 2x+10+4x=10x-12 | | 10x+6=3x+8 | | 6x+10=10x-12 | | 2x+4x+18=0 | | 21=9v=12v | | 2x-5(x-5)=-6+3x+7 | | -3x-4=8x+8 | | 7.26+z=13.26 | | 3c-3(6+2c)=27 | | 3t+2=3+4t |